
2IMV15 Simulation in Computer Graphics - Particle systems

Boris Rokanov (1396331), Georgi Kostov (1396773), Tar van Krieken (1244433)

Fig. 1. Our particle system

Abstract—In this project a particle system was created in C++. This system contains a generalized force system, constraints system,
various integration schemes, and a couple of different demos including a simple cloth simulation.

Index Terms—Particle system, Forces, Constraints, Cloth

1 INTRODUCTION.
Video games, digital art, simulations and many other modern software
make wide use of particle systems. Due to their innate nature of defining
physics on ”particle-level”, the implementation allows for a simple
code definition that produces many complex simulation environments.
Therefore, many of the difficult to recreate natural occurring phenomena
such as fire, clouds, flocks of animals and others become easier to
visualize and analyze [1].

In its essence, a particle system represents the movement of the
particles in some environment after they got different forces applied.
Often, the simulation involves different constraints that restrict the
movement of some particles. In these cases, the forces and constraints
have to be synchronized to produce a realistic particle movement. Yet
another important factor for the particles is how they react on collisions.
There are many types of collisions, such as particle-with-particle and
particle-with-wall.

In this project, a simple particle system was created in C++. This
system contains a generalized force system, constraints system, various
integration schemes, simple collision handling and a couple of different
demos including a simple cloth and a hair simulation.

2 IMPLEMENTATION

2.1 Forces
Together with the particles, the forces are one of the most basic elements
of any particle system. To handle the different types of forces, we added
two properties in the Particle class - the number w, which is the weight,
and the force f , which is a Vec2 f . The two-dimensional vector f
defines the direction and size of the force applied on a given particle.

• Boris Rokanov. E-mail: b.m.rokanov@student.tue.nl.
• Georgi Kostov. E-mail: g.t.kostov@student.tue.nl.
• Tar van Krieken. E-mail: t.m.k.v.krieken@student.tue.nl.

At the end of each frame, the simulation uses an integration scheme
(see section 2.3) to calculate the new proper velocity of the particles
and calculate their new positions thereafter. Note that due to the imple-
mentation of the schemes, heavier objects are less susceptible to force,
thus being both harder to move and slow down.

2.1.1 Gravitational Force
The first force that we implemented in this project was the gravitational
force. This force can be defined as:

fgrav = mG

where m is the mass of the particle and G is the gravitational force.
We extended the base implementation of the Particle class by adding
a property called mass. Furthermore, we defined the gravitational
constant as Vec2 f type as it is added to the Force field, which is of the
same type. We know that G≈ 9.81m/s2 on the surface of Earth. In our
case, we had to decrease this value to 0.05 because the particles were
approaching the ground unrealistically fast. Note that based on the way
that we scale down the velocity when a force is applied to the specific
particle, we can see that the mass is eventually cancelled out.

2.1.2 Spring Force
Another requirement of this project was to implement spring force
between two particles p1 and p2. We can define the spring force of the
particle p1 as:

fp1 =−[ks(||l||− r)+ kd
i·l
||l||]

l
||l||

where ks is the spring factor, kd is the damping factor, l = p1− p2 (the
distance between the two particles), i = vp1 − vp2 (the difference in the
velocity of the two particles) and r is the rest length. The spring force
of the particle p2 is defined as:

fp2 =− fp1

During our experiments, we tuned the damping and spring coefficients.
Eventually, we got the most interesting and natural results by setting
ks = 0.1 and kd = 0.2. Regarding the rest distance value between the
two particles, we used r = 0.2.

2.1.3 Angular Spring Force
The last force that we implemented is called Angular spring force,
which uses a triplet of particles p1, p2, and p3 (Figure 2). The key
idea of this force is to approach a rest angle between the particles and
is used to create a hair-like simulation. The angular spring is applied

Fig. 2. Triplet of particles

between the three particles, whereas there were two normal spring
forces added between the tuples of particles - (p1, p2) and (p2, p3) to
make the simulation more realistic. The angular spring force of the
particle p1 can be defined as:

fp1 =−[ks(||l||−
√
((||l1||2 + ||l2||2)−2(||l1|| · ||l2|| · cos(angle)+

kd
(l·ld)
||l||] ·

l
||l||

and the force of the particle p2 is defined as:

fp2 =− fp1

where the variables are:

• ks - the spring force

• kd - the damping force

• l - the distance between the particles p1 and p3

• l1 - the distance between the particles p1 and p2

• l2 - the distance between the particles p2 and p3

• angle - the angle that has to be kept between the three particles

• ld - the difference in the velocity of p1 and p3

One can notice that it is the same as the normal spring force, except
that it is concerned with keeping the angle in a consistent rest position.
In our experiments, we used π

2 as a rest angle value. We found that by
keeping the damping and spring coefficients higher (ks = 1 and kd = 3)
than with the spring force, we get a more realistic hair-like simulation.

2.2 Constraints
The constraint system is based on the cancellation of forces. The system
first calculates all forces that apply to each given particle, and then goes
through all constraints to cancel out forces that would cause invalidation
of these constraints. When only canceling forces, the particle may still
slowly drift away from the constraint path, and thus a small force will
also be applied to course correct for such drift.

Each constraint needs to adhere to a specific interface, in order for
the general constraint solver to solve the system for multiple constraints
at once. This interface consists of getters for the following properties:

• C : float; A value representing some form of distance between the
target variable and the constraint (0 if adhering to the constraint)

• Ċ : float; The derivative of C with respect to time

• particles : Vector < Particle >; The particles that this constraint
applies to

• J : vector < Vec2f >; The Jacobian matrix of C, I.e. the amount
that each dimension of each particle affects the value of C.

• J̇ : vector < Vec2f >; The Jacobian matrix of Ċ, I.e. the amount
that each dimension of each particle affects the value of Ċ.

We then specify the following vectors:

• q; 2n-long (row) state vector containing the x and y coordinates
of each particle.

• Q: 2n-long (row) force vector containing the force applied to the
x and y axis of each particle.

• W; 2n×2n diagonal inverse mass matrix, containing 1
mass for the

mass corresponding to the particle for each axis.

• C; The m-long (row) constraint distance vector, derived by taking
the C value of each constraint

• J: The m×2n Jacobian matrix of C and the particle axis, derived
by combining the values of J derived from each constraint

Next, the system solves the following equation to calculate the factors
required for each constraint to cancel out the forces

λ
T = (JWJT)−1(−J̇q̇T − JWQT − ksC− kdĊ)

Here ks and kd are spring and damping force factors respectively, to
course correct for when drifting occurs. This is solved using the Conju-
gate Gradient method, solving λ T in:

(JWJT)λ T =−J̇q̇T − JWq̈T − ksC− kdĊ

Finally using λ the actual compensation forces for each particle can be
calculated:

Q̂ = λJ

These constraint correction forces are then added to the forces of each
of the axis of each particle.

In the actual implementation q, q̇ and Q are represented by a vector
of n particle objects. Each particle object stores a vec2 f for its current
position (q), velocity (q̇), and force (Q), as well as its own mass. Ad-
ditionally, because most of these vectors are really sparse, they aren’t
explicitly created. Instead, implicit representations - such as the one
specified by the interface of the constraint - are used. We for instance
calculate vector d:

d =−J̇q̇T − JWq̈T − ksC− kdĊ

In accordance to the following pseudocode:

Algorithm 1: calculating vector d
Input :constraints : Vector < Constraint >
Output :−J̇q̇T − JWq̈T − ksC− kdĊ

1 Let d = 2n zero vector
2 for i← 0 to constraints do
3 Let c = constraints[i]
4 d[i] = d[i]− c.C ∗ ks− c.Ċ ∗ kd
5 for j← 0 to c.particles do
6 Let p = c.particles[j]
7 d[j] = d[j]− c.J̇[j]× p.velocity−1/P.mass · (c.J[j]×

p. f orce)
8 end
9 end

Calculating the product of the matrix with λ (namely (JWJT)λ T) is
done similarly. Here JWJT is simply represented as a function mapping
one vector to another. Hence, no explicit matrix has to be created and
multiplied by. This is much more efficient since all these matrices are
very sparse and would end up wasting many instructions by multiplying
by 0, and adding 0.

Next, 3 specific constraint types were added:

• A CircularWireConstraint, which forces 1 particle to be a certain
distance away from a fixed point.

• A RodConstraint, which forces 2 particles to be a certain distance
apart.

• A LineConstraint, which forces 1 particle to be on a certain line

2.2.1 Circular Wire Constraint
The circular wire constraint takes 1 particle p, a target position (xc,yc)
and a distance r. Let (x,y) be the coordinates of the particle, and let
(ẋ, ẏ) its velocity. Then C was defined as

C(x,y) = (x− xc)
2 +(y− yc)

2− r2

From this the other attributes of the constraint were derived:

• Ċ = 2((x− xc)ẋ+(y− yc)ẏ)

• particles = {p}

• J = {(2(x− xc), 2(y− yc))}

• J̇ = {(2ẋ, 2ẏ)}

2.2.2 Rod Constraint
The rod constraint takes 2 particles p1 and p2, and a desired distance
r. Let (x1,y1) and (x2,y2) be the particles’ coordinates, and let (ẋ1, ẏ1)
and (ẋ2, ẏ2) their velocities. Then C was defined as

C(x1,y1,x2,y2) = (x1− x2)
2 +(y1− y2)

2− r2

From this the other attributes of the constraint were derived:

• Ċ = 2((x1− x2)(ẋ1− ẋ2)+(y1− y2)(ẏ1− ẏ2))

• particles = {p1, p2}

• J = {(2(x1− x2), 2(y1− y2)), (−2(x1− x2), −2(y1− y2))}

• J̇ = {(2(ẋ1− ẋ2), 2(ẏ1− ẏ2)), (−2(ẋ1− ẋ2), −2(ẏ1− ẏ2))}

An alternative definition was also tested:
Let l =

√
(x1− x2)2 +(y1− y2)2

• C =
√
(x1− x2)2 +(y1− y2)2− r

• Ċ = ((x1− x2)(ẋ1− ẋ2)+(y1− y2)(ẏ1− ẏ2))/l

• particles = {p1, p2}

• J = {((x1− x2)/l, (y1− y2)/l), (−(x1− x2)/l, −(y1− y2)/l)}

• J̇ = {((ẋ1− ẋ2)/l, (ẏ1− ẏ2)/l), ((ẋ1− ẋ2)/l, −(ẏ1− ẏ2)/l)}

2.2.3 Line constraint
The line wire constraint takes 1 particle p, a point on the line (xc,yc)
and an angle in radians a. From this, 3 other constants are derived:

• a = sin(a)

• b = cos(a)

• c =−aẋc−bẏc

Let (x,y) be the coordinates of the particle, and let (ẋ, ẏ) its velocity.
Then C was defined as

C(x,y) = a∗ x+b∗ y+ c

From this the other attributes of the constraint were derived:

• Ċ = a∗ ẋ+b∗ ẏ

• particles = {p}

• J = {(a,b)}

• J̇ = {(0,0)}

2.3 Integration schemes

Our project successfully implements three explicit integration schemes
that can be swapped at runtime. All three of them run on every frame,
thus making the simulation step the same as the animation step.

2.3.1 Euler

The Euler integration scheme is the most straightforward. It initially
applies all forces on all the particles, accumulating the total force
applied to each particle. Next, the velocity and position of the particles
get updated with the following formulas:

v = v+dt · f
m

p = p+dt · v

where v is the velocity, p is the position, f is the force, m is the mass of
the particle and dt is the time delta of the simulation.

2.3.2 Mid-point

The Mid-point integration scheme works in a similar manner with the
difference being that it also takes into account where the particle will
be and what forces will it have on the next step. This is calculated by
storing the initial velocity and position of a particle, then temporarily
applying half an Euler integration step. Next, another step is calculated
on top of that, and finally the initial velocity and position are updated
in accordance with this step.

This integration schema results in a smoother simulation compared
to Euler, as the particles are less likely to overshoot their target.

2.3.3 Runge-Kutta 4

Following a similar strategy to the mid-point integration scheme, Runge-
Kutta 4 does four half Euler steps before updating the velocity and posi-
tion of each particle. However, looking multiple steps in the future with
Euler integration would give incorrect position and velocity prediction.

Therefore, the algorithm makes use of the incremental delta of each
of the Euler steps instead, updating the initial velocity and position
with a third of the delta on the second and third step and a sixth of the
delta on the first and forth steps.

This algorithm provides the smoothest, most real-like simulation of
the three integration schemes.

2.4 Mouse Interaction

To create a better demonstration of the spring force, we implemented a
mouse interaction with the particles. When the user selects a particle
p, we create a temporal particle q that follows the mouse cursor (drag-
like force). Between the selected and the mouse particle, we create
a spring force which can easily be triggered by moving the mouse.
We noticed that the temporal particle q gets the negative force of the
particle p, which glitched our demonstration. Therefore, we extended
our SpringForce class to get a boolean variable called isMouseForce.
When this boolean is set to true, we do not apply force to the second
particle (particle q). The particle q is being deleted on the mouse button
release.

2.5 Cloth Simulation

Simple cloth simulation was achieved by placing particles in a rect-
angular grid-like structure and connecting them to their neighbors.
Therefore, one can define a cloth by giving it width and height (i.e.
number of particles), weight of each particle, rest distance between the
particles and damping and spring factors. Additionally, we also exper-
imented with two configurations of connecting neighbors - four-way
and eight-way connections, as shown in figure 3.

Fig. 3. 4-way cloth vs 8-way cloth

Note that in the eight way cloth, the rest distance between diagonal
particles is

√
2 times the vertical/horizontal distance in order to preserve

the rectangle-like shape of the cloth.

2.6 Collision
Collision handling helps create more realistic particle interactions, with
a downside of slowing down the simulation. Nevertheless, we decided
that we can safely ignore the speed reduction by implementing collision
only for objects that we define as collidable (note that particles can
be collidable). Therefore, we implemented a simple collision system,
which in its roots is composed of two parts - collision detection and
velocity change.

In order to facilitate the collision detection, we decided to limit
collidable objects only to rectangular shapes, as both walls and particles
are that shapes. That allowed the simulation to effortlessly check if any
two-dimensional point p is currently intersecting the collidable object,
by calculating the following Boolean value:

x1 ≤ px ≤ x2∧ y1 ≤ py ≤ y2

where x1,x2,y1,y2 are the bounding box coordinates of the collidable
object and px, py are the x and y coordinates of p.

By looping through each particle just before it has moved and check-
ing if its future position will intersect any of the collidable objects, the
application can find all particles whose velocity needs to change in
order to avoid intersection.

Next, the new direction and magnitude of the velocity of all those
particles needs to be calculated, so that in the next frame they won’t
intersect with the collidable objects. This is done with the following
formula:

pv = (s ·nx · |pvx |,s ·ny · |pvy |)

where pv is the two-dimensional velocity vector of the particle p, s
is the velocity dissipating factor of the collidable object, and n is the
normal vector of the collision. Note that nx is calculated using the
following formula (same formula applies for ny, but concerning py, y1
and y2):

nx =

{
−1 if |px− x1|< |px− x2|
1 otherwise

3 EXPERIMENTS AND RESULTS

3.1 Constraints
The constraints seem fairly stable, but in certain conditions high enough
forces can still be applied to cause the system to explode. Constants
ks = 60 and kd = 10 were arbitrarily chosen, and seemed to work
well. When the chosen constants are either too great or too small, the
system is more likely to explode under smaller forces. This primarily
happens when a chain of rod constraints is fully extended, and does
not have the freedom to contract, for instance when the endpoints have
additional circular wire constraints. Both implementations of the rod
constraint appear to be working similar well, with nearly identical
behavior in various tests, to the degree that we couldn’t tell which
implementation was used. We however expect better performance
from the implementation that doesn’t make use of the square root,

since this adds a lot of overhead to all calculations. Especially given
that calculating a square root is a rather involved calculation to begin
with. The number of steps done by the solver appeared to be around
linear in the number of constraints are in the system when a high
precision parameter was used. If the number of steps is limited below
the desired number, everything still seems to operate stably, but the
desired precision may not be reached. This means the system doesn’t
explode, but E.g. rod constraints may stretch a little.

3.2 Integration schemes

The performance and stability of each of the 3 integration schemes was
tested in various versions of the scene, shown in figure 4. In each of
these tests, no external forces other than gravity were applied. The
scene was adapted by changing the number of particles that make up
the chain: the chain length (cl). Additionally, various delta time steps
(dt) were tested. Tables 3.2 to 3.2 show the results of these tests. Note
that the duration of each time step was tested over 10 samples and
averaged, before the system became unstable and exploded. Changing
the time step size has virtually no effect on the duration of the time step,
meaning that taking a slower method may be worth it if the time step
can be increased to make up for it. We can see that Euler’s method is
very unstable, and choosing the midpoint method instead seems like a
safe choice in every scenario. The Runge-Kutta 4 method seems like it
may be worthwhile in some scenarios. Going from the midpoint method
to Runge-Kutta 4 makes the computation about twice as slow, but we
can more than double the time step size without the system exploding.
Hence, while losing some precision, this may be a worthwhile move.

Fig. 4. Integration test scene

dt = 0.2 dt = 0.1 dt = 0.05
Euler 0 2 2
Midpoint 1 12 52
Runge-kutta 4 15 40 72

Table 1. Maximum chain length

cl = 6 cl = 12 cl = 24
Euler 0.01 0.01 0.008
Midpoint 0.1 0.1 0.085
Runge-kutta 4 0.25 0.22 0.115

Table 2. Maximum step size

dt = 0.1, cl = 80 dt = 0.2, cl = 80
Euler 2 2
Midpoint 5 5
Runge-kutta 4 10 9

Table 3. Computation time per step in milliseconds

3.3 Cloth simulation

In order to visualize a realistic cloth interaction, one of the most impor-
tant factors to simulate is how the cloth handles its collision. Therefore,
our initial task was to design a proper testing ground. As seen in Fig-
ures 5, 6 and 7, we created two collidable walls - a big one on the left
which stops almost the whole cloth, and a small one on the right that
acts more like a nail. Additionally, we decided that it will be more
interesting to test the cloth as a type of curtain, so we decided to add
line constraint to the top row of particles.

Next, we experimented with different parameters for the cloth itself.
The first interesting configuration was a 4-way 10x10 cloth with dist =
0.05, ks = 0.9, kd = 0.6 and w = 0.2, dist is the rest distance, ks is
the spring factor, kd is the damping factor and w is the weight of each
particle in the cloth (see Figure 5).

Fig. 5. 4-way cloth configuration

When there were small or no forces applied, this configuration
seemed to preform well. For example, when colliding with either of the
walls, it performed realistically, where the curtain cloth would bounce
off the wall and close a bit. However, when adding gravity and/or
strongly pulling on a certain particle of the cloth, it started to perform a
little non-cloth-like, as the freedom of movement of each particle did
not correctly reflect the freedom of movement of the cloth. In order
to fix that, we began increasing the ks value, as that should make the
cloth stiffer, thus creating a better link of the cloth and its particles’
movement. Nonetheless, that still did not manage to make the object
fell cloth like, as it started becoming too stiff.

Therefore, in order to define a more realistic cloth, we also experi-
mented with the 8-way cloth counterpart of the previous configuration -
10x10 cloth, with dist = 0.05, ks = 0.9, kd = 0.6 and w = 0.2 (Figure
6). Using 8-way connections instead of 4-ways helped improve the re-
alism of the cloth, as it linked the particle and cloth movement without
adding stiffness. The collision remained realistic as well. Additionally,
sometimes particles would get stuck on the right wall, similarly that a
cloth can get entangled when brushing against a nail (Figure 7).

Fig. 6. 8-way cloth configuration
Fig. 7. 8-way entangled cloth
example, pulled to the left

3.4 Hair simulation
To demonstrate our implementation of the Angular spring force, we
added a hair-like simulation to our project. The hair simulation is
composed of particle-triples connected with an angular spring and two
normal springs. For our experiments, we added several curls, where
the first particle of each curl was attached to a line constraint (Figure
8). By tuning the spring and damping coefficients, we decided to keep
ks = 1 and kd = 3 for our demo presentation. To make the subtending
angle between the three particles approach a rest angle of 90◦, we set
the angle = π

2 . Additionally, to improve our demonstration, we added
a particle-with-particle collision.

Fig. 8. Hair-like simulation

4 OPTIONAL FEATURES

4.1 Visualization of forces
As an additional feature to our particle system, we implemented a
visualization of the forces that are applied to the specific particle(s).
Figure 9 shows an example of how the gravity force is displayed in the
simulation.

Fig. 9. Visualization of gravity

5 CONCLUSION AND FUTURE WORK

During this project, we developed a particle system to which the user
could apply various forces such as gravitational, normal spring, and
angular spring forces. Additionally, the particles could be constrained
with a circular wire, a line, and a rod. We created all the required inte-
gration schemes (Euler, Mid-point, Runge-Kutta 4) and experimented
by tuning their parameters (dt and cl). To demonstrate the capabilities
of the particle system, we implemented a cloth simulation and a hair
simulation, which were using forces, constraints, and collisions.

In the current implementation of the hair simulation, the curls can
get flipped due to the forces, but it would be more natural if they are
always pointing to the ground. As a future work, we would like to add
a small gravity force which will cause the curls to always point down.

In the future, developing implicit integration will be very beneficial
to the simulation. It will likely improve the efficiency of the application
by allowing for more realistic results to be calculated faster, which
will in turn reduce the breaking points of the application caused by
inaccuracies.

Another feature which were not able to implement due to time
constraint is the energy transfer during collision. Currently in the
simulation, particles bounce off the collidable object, while it stays in
place. In reality, any two objects that collide will move at least a tiny
amount, depending on their weight and collision impact.

6 CONTRIBUTIONS

Table 4 shows the contribution of each of the group members. Note
that we were with 4 group members, but one group member quite the
course before starting on the project. Note that the mentioned times
exclude the time spent in the lectures, but do include general code as
well as environment (E.g. virtual machine) setup and debugging.

Student Tasks Hours estimation

Boris Rokanov

Gravity force
Spring force
Mouse interaction
Angular spring
Hair simulation

38

Georgi Kostov
Cloth simulation
Collision
Cloth interaction

36

Tar van Krieken Generalized constraint structure
Integration schemes 40

Table 4. Personal contribution.

REFERENCES

[1] W. T. Reeves. Particle systems—a technique for modeling a class of fuzzy
objects. ACM Transactions On Graphics (TOG), 2(2):91–108, 1983.

	Introduction.
	Implementation
	Forces
	Gravitational Force
	Spring Force
	Angular Spring Force

	Constraints
	Circular Wire Constraint
	Rod Constraint
	Line constraint

	Integration schemes
	Euler
	Mid-point
	Runge-Kutta 4

	Mouse Interaction
	Cloth Simulation
	Collision

	Experiments and results
	Constraints
	Integration schemes
	Cloth simulation
	Hair simulation

	Optional features
	Visualization of forces

	Conclusion and future work
	contributions

