
2IMV15 Simulation in Computer Graphics - Rigid Bodies and Fluid

Boris Rokanov (1396331), Georgi Kostov (1396773), Tar van Krieken (1244433)

Fig. 1: An example scene in our fluid simulation generated using rigid bodies.

Abstract— This paper extends the fluid simulation suggested by Jos Stam [3]. We show how we implemented vorticity confinement,
fixed and moving solid bodies, rigid bodies, particles and two way coupling between the different types of bodies and the fluid.

Index Terms—Fluid Simulation, Particle Systems, Vorticity, Rigid Bodies, Solid Objects, Collision

1 INTRODUCTION

Fluid mechanics is a field of physics concerned with the movement,
flow and properties of fluids. It has a variety of use cases in many
scientific areas, such as hydraulics, biology and others. In computer
science particularly, fluid mechanics is often used to build simulations
that visualize fluid interactions in a quick, effective and realistic way.

Video effects and games can rely on those fluid simulations to in-
crease realism as discussed in the article by Jos Stam [3]. The author
suggest a way to approximate the diffusion and advection, which allows
for a fast and life-like implementation. The diffusion function defines
the way density is spread from higher to lower dense regions. Similarly,
the advection shows how the flow and currents of the fluid affect the ve-
locity in a specific region. Additionally, by using a projection function
which forces the fluid to conserve its mass, the simulation can display
complex flows during runtime.

Our project extends the C++ code suggested by the aforementioned
paper by adding additional features. In particular, we explain how we
created vorticity confinement, fixed and moving solid objects, rigid
bodies and particles in the fluid simulation. At the end, we discuss the
limitations of our approach and suggest possible improvements.

2 VORTICITY CONFINEMENT

Vorticity confinement is a mathematical technique used to increase
the live duration and realism of a smoke simulation. Essentially, it
increases the forces that create vortex in the fluid, thus giving small
vortex-like movement even to stale parts of the simulation.

As discussed in another one of Jos Stam’s papers [2], the first step
to creating the vorticity is to calculate the curl ω for all cells of the
simulation:

ω = ∇×u

• Boris Rokanov. E-mail: b.m.rokanov@student.tue.nl.
• Georgi Kostov. E-mail: g.t.kostov@student.tue.nl.
• Tar van Krieken. E-mail: t.m.k.v.krieken@student.tue.nl.

This formula represents the forces that try to spin the flow of the fluid.
Next, we calculate the normalized vorticity location vector N for each
cell the following way:

N = η

|η | , where η = ∇|ω|

This vector shows how cells with lower vorticity point to cells with
higher vorticity. Therefore, in the end we can define our whole vorticity
confinement function per cell as:

vort con f = ε · p(N ×ω)

where ε > 0 denotes a scaling factor, while p denotes the projection
function that ensures the mass of the fluid is preserved.

In the following figures you can see the difference when the vorticity
confinement is applied (Figure 2a) agains when is not (Figure 2b).
These two pictures are captured at the exact same moment of time.
When the vorticity confinement is applied, we can clearly spot the
vortexes that are appearing in the fluid. This brings more realistic
behaviour to the smoke in our simulation.

(a) Vorticity confinement applied (b) No vorticity confinement applied

In Appendix A, we showed the Vorticity Confinement effect captured
at different timesteps of the simulation.

3 FIXED OBJECTS

In order to allow for fixed objects, a boolean boundary array was defined.
This array marks each cell of the fluid simulation as either a boundary
cell or not. Any boundary between a boundary and non-boundary cell is
then interpreted as a boundary, as illustrated in Figure 3. This boundary
is then considered at various stages of the fluid simulation process.

Fig. 3: Boundary interpretation

When advection is performed, any cell that is a boundary is skipped.
Additionally for any non-boundary cell a check is executed to determine
whether the cell at the sample point is a boundary. In case it is a
boundary, the intersection point is approximated by performing a binary
search. This process works as follows. Given the start point s and the
sample point p, we define a test point t starting at t = (p+ s)/2 and a
direction d = p− s. We then iterate i = 2 up til an arbitrary maximum
(e.g. 8) which determines the precision. In each step we check whether
t is in a boundary cell. If it is in a boundary, we perform the following
update: t := t − d/2i. When it is is not a boundary, we perform this
update instead: t := t + d/2i. This process is illustrated in Figure 4.
Under the assumption that the distance was less than 1 cell, this process
allows us to get a good approximation of the intersection position.
Finally this position is used instead of the original sample position.

t

s

p

t
s

p

t

s

p

t

s

p

i=2 i=3 i=4 i=5

Fig. 4: Boundary path clipping, before each iteration i

In the diffusion step the values of the boundary cells are ignored
as illustrated in Figure 5. This means that if a cell is adjacent to 1
boundary cell, this value is not considered when averaging, and the
formulas are updated accordingly. For instance when updating the
density ρ , if there is a wall to the right, we would get the following
formula:

ρi, j := ρi, j +a · (ρi−1, j +ρi, j−1 +ρi, j+1 −3 ·ρi, j)

-3

1

1

1

0

0 0

00

Fig. 5: Boundary diffusion

Finally we have to ensure that the boundary conditions are in these
new boundary cells. This means that the velocity in the direction of
the normal at the boundary should be 0 and the density at the boundary
should also be equal to the density within the non-boundary cell. To
achieve this, the velocity of a neighboring cell is copied and mirrored
with respect to the normal, such that when averaging the velocity is
0 in the normal direction. Similarly for the density, we can simply
copy the value without any alterations. This technique only works
when a boundary cell is only involved in 1 boundary however. Figure
6 illustrates how these values are copied to boundary. In the other
situations we average the values from all non-boundary neighbors, but
here some accuracy is lost.

0.7

0.8

0.8

0.9

0.7

0.9 0.8

0.91

(a) Density copying (b) Velocity mirroring

Fig. 6: Boundary conditions realization

4 MOVING SOLID BODIES

For moving solid bodies we simply define each body by a shape and
its location. Then in each iteration of the simulation all boundary grid
cells are first cleared, and then all solid bodies are projected onto this
grid. This is done by iterating over each cell that falls into the axis
aligned boundary box of the shape at the given solid body’s location,
and checking whether its center point is contained in the shape. If it’s
contained in the shape, we can mark it as a boundary on our grid.

Next we introduce a new grid: the boundary velocity grid bv. This
grid will store two-dimensional velocities for each cell on the grid.
This grid represents the velocity that a boundary cell has. When trying
to ensure the boundary conditions, this grid is now also considered.
Consider for instance the situation as illustrated in Figure 7, where we
have a boundary cell at position (i, j) with a non-boundary cell above
it such that a horizontal boundary is formed. Then we can use the
following assignment for the velocity vy on the y-axis for the boundary
cell:

vy
i, j =−vy

i, j+1 +2 ·bvy
i, j

This assignment ensures that the the speed at the boundary will indeed
be the speed requested by the boundary velocity grid, with respect to
the boundary’s normal vector.

Fig. 7: Boundary velocity

Now when projecting the solid bodies to the boundary grid, we can
also project their velocity to the boundary velocity grid. This results in
the fluid being moved in a way that looks quite convincing. Additionally
one may choose to only project the movement velocity projected onto
the normal of the boundary of the solid shape as illustrated in Figure

Fig. 8: Boundary velocity considering normals

8. This way fluid will not stick to the side of a moving solid body.
Instead of fully removing the projected velocity perpendicular to the
boundary’s normal, we can also take a proportion of it. This way we can
model an amount of drag that the surface has. Note that when multiple
segments of a shape go through the same boundary, the boundary will
average their velocity.

5 MOVING RIGID BODIES

For the moving rigid bodies the particle system was used as a foun-
dation. Additionally inertia, angular velocity, and angle scalars were
added. In three-dimensional space a matrix is required to accurately
represent the inertia, since there are 3 axis of rotation that influence
each other. However when reducing to two-dimensional space, only a
single axis of rotation remains. Because of this, it suffices to only use
scalars to represent the inertia, angular velocity, and angle [1].

A helper function is used to calculate the center of mass in order to
shift shapes such that they rotate around their center of mass, as well
as the inertia given a desired mass. This function takes a resolution
as input, and divides the boundary box of the shape into cells of this
size. Each cell is sampled to test whether it is in the shape. If it is in
the shape, we use it to calculate the average, and we also add it to the
inertia. This is done in such a way that the grid approximation of the
shape will be in accordance with the regular inertia formula:

i = ∑
n

mn · r2
n

We perform steps in a similar way as was done in the particle sim-
ulation. We chose the mid-point method for this. We only had to
accommodate the new degrees of freedom, and everything else works
identical to what was done in the particle simulation. The constraints
were however fully removed, since adding constraints proved to difficult
when dealing with impulse based collisions.

6 COLLIDING CONTACTS

All shapes in the simulation are defined as simple polygons where all
points are defined in counterclockwise order. To determine whether
two shapes A and B are colliding at a given position, a naive check is
performed that requires O(n ·m) computation time, where n and m are
the number of points in A and B respectively. For either shape we iterate
through its points, and for each point p check whether it is contained
in the other shape. This is done by counting how many segments
are intersected by a horizontal half-line ending at p as illustrated in
Figure 9. If this number is odd, p must lie within the other shape. This
technique will not catch all possible collision. Figure 10 illustrates
an example of a collision that would not be detected. However if the
time step is small enough the intermediate state before this type of
collision will be detected properly. After we determined what point p
intersected the shape, we perform an intersection test between the line
formed by p and its position in the previous timestep p′ together with
all segments of the other shape. This way we can determine at what

Fig. 9: Point intersection check

Fig. 10: Non-detected collision between polygons

point of the other shape collision occurred, and what the corresponding
normal direction is.

The simulation iterates through all possible pairs of rigid bodies. For
each pair a coarse check is first performed by checking whether the axis
aligned bounding boxes of the shapes overlap. For any two rigid bodies
whose bounding boxes overlap, the more precise check is performed
on their shapes as described before.

We use a binary search similar to the one described for boundary
checking in the fluid simulation to get an approximation of the furthest
sub-timestep we can perform before collision occurred. We also store
the collision data of the smallest sub-timestep where collision was
still detected. This data is then used to adjust the linear and angular
velocity of both bodies. Consider a collision between rigid bodies
A and B. Using the collision algorithm describe before we can find
corresponding collision points rA and rB relative to the rigid bodies’
frame of reference as the normal direction n. From the rA we can derive
collision position pA(t) and velocity ṗA(t) at a given time t. For this
the rigid body’s position x, velocity ẋ, angle a and angular velocity ṙ
are used to derive the following definitions using rotation matrix R(θ)
for a given angle θ :

pA(t) = R(a(t)) · rA + x

ṗA(t) = ȧ(t) ·
[

0 −1
1 0

]
R(a(t))+ ẋ

Now let p+A and p+B specify the points after collision correction and p−A
and p−B the same points before collision correction. Given a bounce
factor b between 0 and 1, we make sure that the following equation
holds:

n · (ṗ+A − ṗ+B) =−b · (n · (ṗ−A − ṗ−B))

This requires solving of a linear equation. The exact formula is not
very interesting, and thus will not be described here, but all involved
steps can be found in the code.

Finally after reverting the simulation to the last timestep before col-
lision occurred and adapting the velocities accordingly, the simulation
continues to finish the remainder of the timestep. This happens itera-
tively, since another collision may occur when trying to perform the
remainder of the target timestep size.

We additional support collision-ignore groups that can be added to
rigid bodies such that collisions with other rigid bodies in this group

Fig. 11: The pressure field after an external force was applied.

are ignored. This way certain bodies can freely pass through each other,
which is particularly useful when trying to add joints between bodies.

7 TWO WAY COUPLING

To achieve two-way coupling, a pressure field is extracted from the
fluid-simulation. This is done by taking the pressure fields computed
in a single step by Stam’s algorithm and summing them into single
output pressure field. Stam’s algorithm usually only uses the computed
pressure field to adjust the velocity field, such that the fluid acts in an
incompressible way. Having this field to know where pressure would
have been applied is however useful for us in order to determine the
interaction with the rigid bodies. Figure 11 visualizes what the pressure
field may look like.

Just like for moving bodies, the rigid bodies project their shape onto
the boundary grid to form boundaries that approximate their shape.
Then for each rigid body, its boundary is approximated. This is done
by taking a step size s, and sampling all points that are distance s apart
on the boundary. For each point p we also extract the boundary’s
normal direction n. We then perform the velocity transfer as described
in section 4, but for the velocity of point p rather than the velocity of
the rigid body. We may however get multiple samples per grid cell,
which will all get summed up in the boundary velocity grid. Hence we
also keep track of the number of samples per cell in order to compute
the average for each cell when all bodies are projected.

We also use point p and its normal n to transfer force to the rigid
body. This uses the relation between pressure and force:

pressure = f orce/area

Since we are in two-dimensional space, we use the step size s instead of
the area. The pressure field can now be used to derive how much force
to apply at point p. For this we also have to consider our normal n in
order to only apply the proportion of the force exerted in this direction.
Once again however, we can use a drag scalar to also transfer some
of the force exerted in the perpendicular direction. The force applied
at point p will also partially convert into torque, depending on the
direction of the force and the location of p relative to the origin of the
body. Figure 12 shows how the samples are used to transfer velocity
from the rigid body, and force to the rigid body.

8 PARTICLES

Particles are simply treated as rigid bodies with a single point as its
shape. This single point can simply be considered a degenerate polygon

Fig. 12: Rigid body boundary sampling

with an area of size 0, and is treated as such in our implementation.
This way we also get collisions between particles and other rigid bodies
for free. This however does pose a little problem when it comes to our
two-way coupling, since these point polygons do not really have normal
directions when their boundary is sampled. To solve this, particles are
treated as circles when it comes to sampling, and a sample is returned
in 8 uniformly distributed directions. Each of these samples provides
the same location, but specifies another normal direction.

Springs forces were adapted so they work on rigid bodies in general,
allowing you to even specify the attachment point relative to the body’s
origin. This feature is not used for the particles since no force should
be transformed into torque here, but this behavior can be seen when
dragging rigid bodies using the mouse (which makes use of a special
version of the spring force). Using these springs, a cloth is generated.
This cloth automatically has two-way coupling with the fluid, since
particles are simply implemented as rigid bodies, for which we already
established the two-way coupling.

9 RESULTS AND EVALUATION

In order to evaluate our implementation, we performed multiple ex-
periments, some of which can be seen in Appendix B. We conclude
that our approach offers a lot of freedom in the types of rigid bodies
that can be modelled, as shown in Figure 13. The spring forces and
collision ignore groups can add to this by constraining bodies together
to emulate joints. The interaction with the fluid simulation also behaves
rather well and looks convincing.We even found that the interaction
with the fluid had the expected result when modelling a dart. This dart
was made to be long with a lot of surface area, and has the center of
mass in the front. Then due to the drag with the fluid that it moves
through, it tends to point face forward into the direction it is moving.

Fig. 13: Rigid body with a complex shape

However, we also found a number of issues with the approach. First
off, it does not scale particularly well. The collision detection between
two shapes is rather inefficient, and the boundary boxes are also checked
for any pair of shapes. The simulation also is able to get stuck in certain
situations. It will get stuck when even the smallest fraction of a timestep
results in a collision. The handling of the collisions should ensure this

does not happen, but we think that resolving one collision may cause
another in a way that a feedback loop is formed. We also believe that
the density is slowly dissipating over time. This is likely due to density
not fully being moved by the applied boundary velocity before being
set to 0 when the rigid body occupies a new cell. And lastly we noticed
that the interaction with the fluid does not behave as expected when
it comes to the mass of the object. It appears that when gravity is
applied, bodies with larger masses slow down due to interaction with
the fluid faster than those with small masses. We would have expected
the opposite to happen, because bodies with large masses should be
able to overcome drag more easily. This behavior may be caused by
some sort of feedback loop between the rigid body influencing the
speed of the fluid, and that same fluid exerting a force on the rigid body.

10 CONCLUSION AND FUTURE WORK

In conclusion, our approach for simulating rigid bodies in fluids is not
perfect, but does create decently convincing results. It is rather flexible
and can be used to create simple scenes, but it should not be relied on
when interested in physically accurate interactions.

In the future we would like to investigate what causes the density
to dissipate over time, and possibly try resolving this. Similarly it
would be worthwhile to analyze what causes the unexpected behavior
with respect to the masses. The realism of the simulation would likely
benefit a lot by finding out the exact cause of this and resolving it
if possible. Lastly we would like to try an alternative approach for
collision handling. The current approach is not very efficient, and
sometimes even results in the simulation fully coming to a halt. A
common approach for simulations appears to be making use of the
Separating Axis Theorem. When this theorem is used, collision can be
resolved without rolling back the simulation. This could result in less
realistic simulations and even jitter, but this still seems preferable over
the simulation fully halting.

11 CONTRIBUTIONS

Student Tasks Hours

Boris Rokanov

Implemented Vorticity Confinement
Implemented solid boundaries
Generated demo scenes for showcases
Added voiceover in the demo

62

Georgi Kostov

Helped with vorticity confinement
Worked on moving solid bodies
Generated demo scenes for showcases
Edited the demo video

60

Tar van Krieken

Helped with fluid boundaries
Implemented colliding rigid bodies
Came up with and implemented the

two-way coupling approach

70

Table 1: Personal contribution.

REFERENCES

[1] M. J. Baker. Physics - dynamics rotation - inertia tensor.
https://www.euclideanspace.com/physics/dynamics/inertia/

rotation/index.htm. Accessed: 2022-06-27.
[2] R. Fedkiw, J. Stam, and H. W. Jensen. Visual simulation of smoke. In

Proceedings of the 28th annual conference on Computer graphics and
interactive techniques, pages 15–22, 2001.

[3] J. Stam. Real-time fluid dynamics for games. In Proceedings of the game
developer conference, volume 18, page 25, 2003.

https://www.euclideanspace.com/physics/dynamics/inertia/rotation/index.htm
https://www.euclideanspace.com/physics/dynamics/inertia/rotation/index.htm

APPENDIX A VORTICITY CONFINEMENT DURING TIME STEPS

The following Figures clearly show the effect of the Vorticity confinement on the fluids during differnt time steps.

Fig. 14: With Vorticity Confinement at time
step 1

Fig. 15: With Vorticity Confinement at time
step 2

Fig. 16: With Vorticity Confinement at time
step 1

In the three Figures below we can see the baseline implementation of the fluid. Note that these pictures are taken at the same timestep respectively
to the ones above them.

Fig. 17: Without Vorticity Confinement at
time step 1

Fig. 18: Withoutout Vorticity Confinement
at time step 2

Fig. 19: Without Vorticity Confinement at
time step 1

APPENDIX B EXAMPLE SCENES

Here we showcase some of the more interesting demo scenes we created using our project. Note that the green points in some of the Figures show
collision points between bodies and/or particles.

Fig. 20: A car model made from
solid objects. Note that smoke
does not pass trough the car

Fig. 21: Rigid bodies and fluid
interaction

Fig. 22: Rigid bodies, cloth and
fluid interaction

Fig. 23: Particle cloth simula-
tion and fluid interaction

The next three Figures show collision of rigid bodies with how rigid bodies that have the same mass:

Fig. 24: Initial position of the rigid bodies Fig. 25: Collision between the rigid bodies Fig. 26: Final position of the rigid bodies

	Introduction
	Vorticity confinement
	Fixed objects
	Moving solid bodies
	Moving rigid bodies
	Colliding contacts
	Two way coupling
	Particles
	Results and evaluation
	Conclusion and future work
	contributions
	Appendix Vorticity confinement during time steps
	Appendix Example Scenes

